

2011 ANNUAL DRINKING WATER QUALITY REPORT

Contact: **BRAD PILAND**
Public Works Director

Our Drinking Water Meets or Exceeds All Federal (EPA) Drinking Water Requirements

This report is a summary of the quality of the water we provide our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests, and is presented in this brochure. We hope this information helps you become more knowledgeable about what's in your drinking water.

SPECIAL NOTICE

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

Public Participation Opportunities

Date: Monday - Friday
Time: 8:00 A.M. - 4:30 A.M.
Location: 105 Cockrell Hill Rd.

Ovilla, TX 75154

Phone No: (972) 617-7262

To learn about future public meetings (concerning your drinking water), or to request to schedule one, please call us.

WATER SOURCES: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, and organic chemical contaminants.

En Espanol

Este informe incluye informacion importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en espanol, favor de llamar al tel. (972) 617-7262 ~ para hablar con una persona bilingue en espanol.

Where do we get our drinking water?

The source of drinking water used by CITY OF OVILLA is Purchased Surface Water from Dallas Water Utility.

A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of

constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus our source water protection strategies. Some of this source water assessment information will be available later this year on Texas Drinking Water Watch at <http://dww.tceq.state.tx.us/DWW/>. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About The Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCL's are set as close to the MCLG's as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL)

The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU – Nephelometric Turbidity Units

MFL – million fibers per liter (a measure of asbestos)

pCi/L – picocuries per liter (a measure of radioactivity)

ppm – parts per million, or milligrams per liter (mg/L)

ppb – parts per billion, or micrograms per liter (ug/L)

ppt – parts per trillion, or nanograms per liter

ppq – parts per quadrillion, or pictograms per liter.

The CITY OF OVILLA Public Works

Department continues to monitor the water on

a daily basis. Monthly samples are collected by city staff and tested by the Trinity River Authority. The water within the CITY OF OVILLA'S DISTRIBUTION SYSTEM is safe to drink and does meet the standards set forth by TCEQ. Dallas Water Utilities (DWU) regularly tests drinking water for more than 180 constituents. About 50,000 tests each

month are conducted on Dallas water to ensure that it is clean and meets all water quality requirements.

Inorganic Contaminants

Year or Range	Contaminant	Average Level	Minimum Level	Maximum Level	MCL	MCLG	Unit of Measure	Source of Contaminant
2005	Barium	0.025	0.025	0.025	2	2	ppm	Discharge of drilling wastes; discharge from metal refineries, erosion of natural deposits.
2005	Fluoride	0.6	0.6	0.6	4	4	ppm	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
2011	Nitrate	0.686-0.686	0.686	0.686	10	10	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage, erosion of natural deposits.
2005	Gross beta emitters	2.5	2.5	2.5	50	0	Pcl/l	Decay of natural and man-made deposits.

Organic Contaminants TESTING WAIVED, NOT REPORTED, OR NONE DETECTED

Maximum Residual Disinfectant Level

Year	Disinfectant	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit of Measure	Source of Disinfectant
2011	Chloramine Residual	1.3	0.5	3.3	4	4	ppm	Disinfectant used to control microbes

Disinfection Byproducts

Year	Contaminant	Highest Level	Range	MCL	Unit of Measure	Violation	Source of Contaminant
2011	Total Haloacetic Acids	16	15.8 – 15.8	60	ppb	None	Byproduct of drinking water disinfection
2011	Total Trihalomethanes	35	34.9 – 34.9	80	ppb	None	Byproduct of drinking water disinfection

Copper and Lead	Date Sampled	MCLG	Action Level	90 th Percentile	Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	08/12/10	1.3	1.3	0.249 ml	0	ppm	None	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems
Lead	08/12/10	0	15	1.65	0	ppb	None	Corrosion of household plumbing systems; Erosion of natural deposits

Required Additional Health Information for Lead

If present, elevated levels of lead can cause serious health problems, for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

RETURN SERVICE REQUESTED

Turbidity NOT REQUIRED
Total Coliform REPORTED MONTHLY TESTS FOUND NO COLIFORM BACTERIA
Fecal Coliform REPORTED MONTHLY TESTS FOUND NOT FECAL COLIFORM BACTERIA
Secondary and Other Constituents Not Regulated
(No associated adverse health effects)

Year or Range	Constituent	Average Level	Minimum Level	Maximum Level	Secondary Level	Unit of Measure	Source of Contaminant
2005	Aluminum	0.033	0.033	0.033	.05	ppm	Abundant naturally occurring element.
2005	Bicarbonate	63	63	63	NA	ppm	Corrosion of carbonate rocks such as limestone.
2005	Calcium	28.7	28.7	28.7	NA	ppm	Abundant naturally occurring element.
2005	Chloride	22	22	22	300	ppm	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2005	Magesium	3	3	3	NA	ppm	Abundant naturally occurring element.
2005	pH	8.6	8.6	8.6	>7.0	units	Measure of corrosivity of water.
2005	Sodium	16	16	16	NA	ppm	Erosion of natural deposits; byproduct of oil field activity.
2005	Sulfate	34	34	34	300	ppm	Naturally occurring; common industrial byproduct; byproduct of oil field activity
2005	Total Alkalinity as CaCO ₃	52	52	52	NA	ppm	Naturally occurring soluble mineral salts.
2005	Total Dissolved Solids	153	153	153	1000	ppm	Total dissolved mineral constituents in water.
2005	Total Hardness as CaCO ₃	84	84	84	NA	ppm	Naturally occurring calcium.